波多野结衣中文无码,一区二区三区中文字幕人妻,日本福利一区二区三区四区,久久er99精品国产一区

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>選購指南>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

安全高效的蛋白結(jié)晶條件篩選試劑盒

來源:北京西美杰科技有限公司   2019年12月06日 10:33  

    想要獲得高質(zhì)量蛋白晶體一般需要克3個(gè)難題1、獲得純度高的,均一的蛋白樣品;2,篩選可結(jié)晶的條件;3,優(yōu)化結(jié)晶條件,后獲得高質(zhì)量的單晶;其中,篩選可結(jié)晶的條件是獲得蛋白質(zhì)晶體的主要瓶頸之一;

    西美杰代理的Jena Biosource品牌中有一系列蛋白結(jié)晶研究所要用的試劑和耗材,以下給大家介紹一下Jena里面的蛋白結(jié)晶條件篩選試劑盒。

1、JBScreen Basic

JBScreen Basic是基于稀疏矩陣法的蛋白結(jié)晶試劑盒,包含了96種篩選條件,整套試劑盒分為4個(gè)小規(guī)格,每個(gè)小規(guī)格包含24種條件,24個(gè)條件分別密封在螺旋蓋試管中,每管10ml,可以隨時(shí)使用。Jena里面的蛋白結(jié)晶篩選試劑盒不包含二甲shenjia

鹽,用MES進(jìn)行替代。

 

名稱

貨號(hào)

規(guī)格

JBScreen Basic 1

CS-121

24 solutions (10 ml each)

JBScreen Basic 2

CS-122

24 solutions (10 ml each)

JBScreen Basic 3

CS-123

24 solutions (10 ml each)

JBScreen Basic 4

CS-124

24 solutions (10 ml each)

JBScreen Basic 1 – 4

CS-125

4 Kits

JBScreen Basic HTS

CS-203L

96 solutions (1.7 ml each)

 

2、 JBScreen Classic

      這個(gè)系列是Jena品牌中初推出的經(jīng)典的結(jié)晶條件試劑盒,在文獻(xiàn)中的應(yīng)用以每年30%的速度增長;這個(gè)試劑盒包含了240個(gè)篩選條件,涵蓋了各種有效沉淀劑和Buffer。整套試劑盒分成了10小規(guī)格,每個(gè)規(guī)格包含了24個(gè)條件,如果只想要其中某些條件,是可以單獨(dú)購買小規(guī)格試劑盒的;

 

名稱

貨號(hào)

條件數(shù)量

JBScreen Classic 1 (PEG 400 to 3000 based)

CS-101L

24 solutions (10 ml each)

JBScreen Classic 2 (PEG 4000 based)

CS-102L

24 solutions (10 ml each)

JBScreen Classic 3 (PEG 4000+ based)

CS-103L

24 solutions (10 ml each)

JBScreen Classic 4 (PEG 5000 MME to 8000 based)

CS-104L

24 solutions (10 ml each)

JBScreen Classic 5 (PEG 8000 to 20000 based)

CS-105L

24 solutions (10 ml each)

JBScreen Classic 6 (Ammonium Sulfate based)

CS-106L

24 solutions (10 ml each)

JBScreen Classic 7 (MPD based)

CS-107L

24 solutions (10 ml each)

JBScreen Classic 8 (MPD/Alcohol based)

CS-108L

24 solutions (10 ml each)

JBScreen Classic 9 (Alcohol/Salt based)

CS-109L

24 solutions (10 ml each)

JBScreen Classic 10 (Salt based)

CS-110L

24 solutions (10 ml each)

 

JBScreen Classic 1–10

CS-114L

10 Kits

JBScreen Classic HTS I (PEG based)

CS-201L

96 solutions (1.7 ml each)

JBScreen Classic HTS II (Ammonium Sulfate, MPD, Alcohol and Salt based)

CS-202L

96 solutions (1.7 ml each)

 

 

         3、JBScreen pentaerythritol

      基于兩種新奇的沉淀劑,Pentaerythrotol丙氧基化物和乙基化物,用于生物大分子初結(jié)晶條件的篩選。兩者都包含一個(gè)Pentaerythrotol的支鏈型高分子。因此他們不同于傳統(tǒng)的沉淀劑(如MPD和PEG)。另外,Pentaerythrotol合物具有冷凍保護(hù)劑的功能,蛋白晶體在這些高濃度的沉淀劑中生長,并能夠由晶滴直接冷凍

    

名稱

貨號(hào)

規(guī)格

JBScreen Pentaerythritol 1 (PEP 426 based)

CS-191

24 solutions (10 ml each)

JBScreen Pentaerythritol 2 (PEP 629 based)

CS-192

24 solutions (10 ml each)

JBScreen Pentaerythritol 3 (PEE 270 based)

CS-193

24 solutions (10 ml each)

JBScreen Pentaerythritol 4 (PEE 797 based)

CS-194

24 solutions (10 ml each)

JBScreen Pentaerythritol 1 – 4

CS-195

4 Kits

JBScreen Pentaerythritol HTS

CS-210L

96 solutions (1.7 ml each)

 

     參考文獻(xiàn):

  1. Sheu-Gruttadauria et al. (2019) Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. The EMBO Journal e101153.
  2. Pozzi et al. (2019) Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R. Biomolecules DOI:10.3390/biom9040134.
  3. Deka et al. (2018) Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 504:40.
  4. Dall et al. (2018) Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J. Biol. Chem. 293:13151.
  5. Rinaldi et al. (2018) Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochem. Biophys. Rep. 16:39.
  6. Flores-Ibarra et al. (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 8:9835.
  7. Bernedo-Navarro et al. (2018) Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins 10:108.
  8. Zeng et al. (2017) Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife DOI:10.7554/eLife.28619.
  9. Oiki et al. (2017) Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci. Rep. 7:17005.
  10. Jansson et al. (2017) The interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292:15501.
  11. McPhail et al. (2017) The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 25:121.
  12. Songsiriritthigul et al. (2017) Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Cryst F 73:62.
  13. Yokoyama et al. (2017) Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Cryst F 73:555.
  14. Corvaglia et al. (2019) Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificialanalogues of DNA mimic proteins. Nucleic Acids Research DOI:10.1093/nar/gkz352.
  15. Deka et al. (2017) Comparative structural and enzymatic studies on Salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features. J. Struct. Biol. DOI:10.1016/j.jsb.2017.12.012.
  16. Moonens et al. (2015) Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research 46:14.
  17. Zano et al. (2014) Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. Acta Cryst. D 70:442.
  18. Goyal et al. (2013) Crystallization and preliminary X-ray crystallographic analysis of the curli transporter CsgG. Acta Cryst. F69:1349.
  19. Fujita et al. (2017) Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem. Biol. 12:1947.
  20. Weidenweber et al. (2017) Structure of the acetophenone carboxylase core complex: prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci. Rep. 7:39674.
  21. Fujita et al. (2017) Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J. Struct. Biol. 198:65.
  22. Wagner et al. (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114.
  23. Demmer et al. (2015) Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. JBC 290:21985.
  24. Rekittke et al. (2015) Structure of the GcpE-HMBPP complex from Thermus thermophilius. Biochem. Biophys. Res. Commun.458:246.
  25. Uchida et al. (2014) Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J. Biochem. 155(3):173.
  26. McDougall et al. (2019) Proteinaceous Nano container Encapsulate Polycyclic Aromatic Hydrocarbons. Sci. Rep. 9:1058.
  27. De Wijn et al. (2018) Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Cryst F 74:747.
  28. Kumar et al. (2018) Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 117:890.
  29. Leal et al. (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 114:64.
  30. Sousa Cavada et al. (2018) Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromolec. 106:369.
  31. Ernst et al. (2018) A comparative structural analysis of the surface properties of asco-laccases. PLOS ONEDOI:10.1371/journal.pone.0206589.
  32. Kumar et al. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 13:54.
  33. Nascimento et al. (2017) Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 92:79.
  34. Cattani et al. (2015) Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat. Chem. 7:823.
  35. Boltsis et al. (2014) Non-contact Current Transfer Induces the Formation and Improves the X?ray Diffraction Quality of Protein Crystals. Crystal Growth & Design 14:4347.
  36. Kampatsikas et al. (2017) In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Cryst. F 73:491.
  37. Kolek et al. (2016) A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase. Acta Cryst. F 72:307.
  38. Tan et al. (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Cryst. D 70:2054.
  39. Li et al. (2014) Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth & Design 14:2034.
  40. Jacobs et al. (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Cryst. F 68:1255.
  41. Li et al.(2011) Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. Crystal Growth & Design 11(2):530.
  42. Shaw Stewart et al. (2011) Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Crystal Growth & Design 11(8):3432.
  43. Caffrey et al. (2009) Crystallizing Membrane Proteins Using Lipidic Mesophases. Nat Protoc. 4:706.
  44. Cherezov et al. (2006) In Meso Structure of the Cobalamin Transporter, BtuB, at 1.95 Å Resolution. J. Mol. Biol. 364:716.

免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
日韩精品欧美亚洲国产最大| 久久久久成人精品免费播放寂寞少妇| 国产又粗又长又硬又黄网站| 了解最新国产精品18久久| 国产一级精品无码免费视频| 亚洲精品国产精品系列| 亚洲欧洲欧美中文日韩| 日韩欧美一级视频观看| 国产精品日韩在线亚洲一区| 91精品国自产在线播放| 精品久久久久精品三级18| 久久久久久久久久久久久久久久久久久| 国产精品久久久久九九九九不卡| 日韩精品一区二区三区高清免费| 国产一级精品无码免费视频| 97人妻爽人人爽人人| 日韩精品高清在线观看| 欧美中文亚洲国产日韩| 国产又粗又长又硬又黄网站| 精品人妻一区二区三区20| 欧美日韩一区二区乱码| 亚洲国产精品成人综合色在线| 国产精品日本女优在线观看| 国产精品偷窥熟女精品视频| 色婷婷狠狠久久综合五月| 欧美综合亚洲日韩精品区| 欧美黄片一区二区免费| 欧美成人3p视频在线观看| 日本成人一区二区不卡| 三点水一个色是什么字| 国产精品日本女优在线观看| 人妻精品久久一区二区| 亚洲高清日韩中文字幕| 日本午夜福利在线视频| 麻豆理论片在线观看| 亚洲欧美成人激情在线| 亚洲va久久噜噜噜久久| 亚洲区一区二区三区视频| 国内自拍2019在线| 日韩欧美精品中文字幕一区| 日本午夜羞羞在线观看|