波多野结衣中文无码,一区二区三区中文字幕人妻,日本福利一区二区三区四区,久久er99精品国产一区

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測(cè)定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>行業(yè)標(biāo)準(zhǔn)>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

GMW15919油漆附著力熱沖擊試驗(yàn)標(biāo)準(zhǔn)

來源:上海鼎振儀器設(shè)備有限公司   2018年02月07日 13:13  

undefined

undefined

undefined
 

 


1 Scope
This procedure is used to determine the resistanceto coating adhesion loss of coated surfaces ofaluminum, plastic, steel, and other substrates when subjected to a wet steam blast similar to thatproduced by vehicle wash equipment.
Note:  Nothing in this standard supersedesapplicable laws and regulations.
Note: In the event of conflict between the English
and domestic language, the English language shall take precedence.
1.1 Purpose. To determine the resistance to coating adhesion loss of coated surfaces of aluminum, plastic, steel, and other substrates when subjected to a wet steam blast similar to that produced by vehicle wash equipment.
1.2 Foreword. Not applicable.
1.3 Applicability. Painted exterior components of vehicle.
2 References
Note: Only the latest approved standards are applicable unless otherwise specified.
2.1 External Standards/Specifications.ISO 2808
2.2 GM Standards/Specifications.
3 Resources
3.1 Facilities. Not applicable.
3.2 Equipment.
3.2.1 Test Equipment and Material.
3.2.1.1 Scribe Tool. A straight-shank tungsten carbide tip, lathe cutting tool or carbide-tipped pencil type tool with tip angle of 60 ± 15 degrees or equivalent.
3.2.1.2 Razor blade.
3.2.1.3 Water Bath. Water bath at 38 ± 2°C temperature with 5 ppm maximum dissolved solids as measured utilizing a suitable dissolved solids meter.

3.2.1.4 Freezer capable of maintaining -29 ± 3°C temperature.
3.2.1.5 Steam generator.
Note: Model 100 (and the earlier Model 60) steam generator (from Atomic Steam Co., 10727 Fendell, Detroit MI 48238) has been found to be satisfactory. Milwaukee 1.27 cm ( 1 / 2 in) globe valve 1151 to 1161, 150 Steam Working Pressure,
300 Water-Oil-Gas,  is  adequate  for  use  in standardization of generator.
3.2.1.5.1 Input Flow of Water. 2.7 L/minute with a deviation less than 5% (3.2.1.5.1.1).
3.2.1.5.1.1 Model 100 Steam Generator. The pumping pressure is directly related to the input flow rate. The pressure needed for the required flow can be determined by measuring the pump pressure and discharge flow rate with the burner off. When the burner is turned on, the required flow rate is obtained by readjusting to the required
pump pressure.
3.2.1.5.2 Nozzle Diameter. 12.5 mm ID within 2% and at least 100 mm long.
3.2.1.5.3 Discharge Dynamic Head. 37.9 kPa within ± 5% measured 25 mm from the nozzle using a 47 mm ID tube. A nondiverging discharge is required for this test (3.2.1.5.3.1 and 3.2.1.5.3.2 and Figure 1).
3.2.1.5.3.1 This is done by placing the tube midstream 25 mm from the nozzle. The tube size must not be varied because the densities and velocities are not uniform throughout the cross section of the discharge stream.
3.2.1.5.3.2 Adjusting the discharge dynamic head may be required. This must be done in such a way that the input flow rate as specified in 3.1.7.1 is maintained. This is done by adjusting the amount of heat transferred to the water. Increasing the heat will cause the input flow rate to change. It must be readjusted. This operation will result in an
increased dynamic pressure. To decrease it, decrease the heat and then adjust the flow (pressure).
3.2.1.6 Face Mask. Full face cover safety mask is required when performing this test.
3.2.1.7 Gloves. Gauntlet-type gloves for protection of hands are required.
3.3 Test Vehicle/Test Piece. Not applicable.
3.4 Test Time. Not applicable.
3.5 Test Required Information. Not applicable.
3.6 Personnel/Skills. Not applicable.
4 Procedure
4.1 Preparation. Not applicable.
4.2 Conditions. Not applicable.
4.2.1 Environmental Conditions. Not applicable.
4.2.2 Test Conditions. Deviations from the requirements of this standard shall have been agreed upon. Such requirements shall be specified on component drawings, test certificates, reports,etc.
4.3 Instructions.
4.3.1 Standardize the Model 100 steam generator.
4.3.1.1 Measure and maintain the input flow at
2.7 L/minute.
4.3.1.1.1 Install a 1.27 cm ( 1 / 2 in) globe valve in the steam line between coil weld assembly and hose nipple, 0.4 cm (5/32 in).
4.3.1.1.2 With burner off, engage pump and adjust globe valve until 2.7 L/minute is obtained.
4.3.1.1.3 Record the tank pressure that is obtained with the 2.7 L/minute flow rate. (This induced back pressure simulates the pressure that steam exerts on the system while the burner is on.)
4.3.1.2 Measure and maintain the mean dynamic head at 37.9 kPa.
4.3.1.2.1 Open globe valve and turn on the burner.
4.3.1.2.2 Allow tank pressure to stabilize before reading the mean dynamic head.
4.3.1.2.3 Adjustments of the dynamic head are to be made by changing the amount of heat transferred to the water at the burner. (The flow rate, as previously specified, must be maintained.)
4.3.2 Measure and record film thickness at proposed test sites per ISO 2808.
4.3.3 Immerse the parts or panels (previously prepared per engineering material specification) in the water immersion tank for 3 h at 38 ± 2°C.Aerate the water by placing a 6.5 ram (0.25 in) ID plastic tube at the bottom of the tank and bubble
air at a rate of 1 bubble per second minimum.Maintain 5 ppm maximum dissolved solids (as NaCl) in the water. Check and record NaCl level using dissolved solids meter.
4.3.4  Remove  the  samples  after  3 h  and immediay place in freezer at -29 ± 3°C.
4.3.5 Prepare a suitable rack to hold the test panels.
4.3.6 Following a 3 h minimum freeze cycle, remove the sample and immediay scribe an X through the coating into the substrate across the entire panel or part where feasible (Figure 2). A razor blade should be used on elastomer substrates. Mount the sample on the test rack.
4.3.7 Within 60 s from freezer removal, direct the steam blast at the scribe lines for a rain of 30 s.Angle of impingement and distance from the panel are important; care must be taken to ensure the dimensions are adhered to as follows: 45 degree
angle at a 50 to 75 mm distance (Figure 3).
4.3.7.1 High pressure wet steam represents a potential safety hazard. Not only is it necessary to secure the samples properly, but full face protection and gloves are required.
4.3.8 Remove from blast, examine, and report any loss of paint adhesion and/or any blushing (i.e., whitening, loss of gloss) and the average distance of paint adhesive loss from the scribe line.

                   
undefined
 

 

                               Figure 1: Measuring the Discharge Dynamic Head

undefined




                                Figure 2: Scribe on Panel

undefined
 

                               Figure 3: Steam Blast Impingement
5 Data
5.1 Calculations. Not applicable.
5.2 Interpretation of Results. Examine sample for any loss of paint adhesion and/or any blushing (i.e., whitening, loss of gloss) and the average distance of paint adhesive loss from the scribe line.
5.3 Test Documentation. Report any loss of paint adhesion and/or any blushing (i.e., whitening, loss of gloss) and the average distance of paint
adhesive loss from the scribe line.
6 Safety
This standard may involve hazardous materials, operations, and equipment. This standard does not propose to address all the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and  health  practices  and  determine  the applicability of regulatory limitations prior to use.
7 Notes
7.1 Glossary. Not applicable.
7.2 Acronyms, Abbreviations, and Symbols. Not applicable.
8 Coding System
This standard shall be referenced in other documents, drawings, etc., as follows:
Test to GMW15919
9 Release and Revisions
9.1 Release. This standard originated in May 2008, replacing GM9525P. It was first approved by Materials Engineering in July 2009. It was first published in July 2009.

免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
免费人成视频在线观看不卡| 亚洲高清日韩中文字幕| 国产激情作爱在线观看| 国偷自产av一区二区三区| 日本精品va在线观看| 国产免费黄色片在线观看| 国产精品日韩在线亚洲一区| 欧美乱码精品一区二区三区卡| 亚洲欧美日韩国产最新版| 无码人妻视频一区二区三区| 亚洲精品伦理一区二区三区青春| 欧美日韩专区一区二区| 日韩精品视频在线观看一区二区三区| 中文人操人人插人免费看视频| 久久亚洲国产精品五月天| 亚洲AV永久无码精品加勒比| 91久久久久久波多野高潮| 国产欧美一区二区综合日本| 国产又粗又长又硬又黄网站| 欧美成人3p视频在线观看| 99久久精品视香蕉蕉| 欧美激情一区日韩国产| 免费中文字幕一区二区| 日韩在线观看一卡二卡| 日韩欧美一区中文字幕在线| 精品国产日本一区二区| 亚洲国产日韩一区二区三区| 国产日韩一区在线观看视频| 欧美日韩成人精品大片| 中文字幕一区二区三区免费看| 亚洲欧美都市校园另类| 国产精品久久小视频| 亚洲午夜久久久久噜噜噜| 国产日欧一片内射午夜| 一区二区三区精品亚洲视频| 久久久久国产精品老熟女| 欧美一区二区三区啪啪| 亚洲一区精品中文字幕| 国产日韩欧美精品小视频| 成人在线三级黄色片| 丁香六月婷婷综合缴情欧美|